

TensorGrip F20 500ml Aerosol Spray Adhesive QUIN GLOBAL ASIA PACIFIC

Version No: 3.3

Chemwatch Hazard Alert Code: 4

Issue Date: 19/12/2022 Print Date: 19/12/2022 S.GHS.AUS.EN

SECTION 1 Identification of the substance / mixture and of the company / undertaking

Safety Data Sheet according to WHS Regulations (Hazardous Chemicals) Amendment 2020 and ADG requirements

Product Identifier				
Product name	TensorGrip F20 500ml Aerosol Spray Adhesive			
Synonyms	Not Available			
Proper shipping name	AEROSOLS (contains LPG (liquefied petroleum gas))			
Other means of identification	Not Available			

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses Adhesives

Details of the manufacturer or supplier of the safety data sheet

Registered company name	QUIN GLOBAL ASIA PACIFIC			
Address	B Hincksman Street Queanbeyan, NSW 2620 Australia			
Telephone	2 6175 0574			
Fax	Not Available			
Website	www.quinglobal.com			
Email	sales@quinglobal.com.au			

Emergency telephone number

Association / Organisation	CHEMWATCH EMERGENCY RESPONSE	
Emergency telephone numbers	+61 1800 951 288	
Other emergency telephone numbers	+61 3 9573 3188	

Once connected and if the message is not in your preferred language then please dial 01

SECTION 2 Hazards identification

Classification of the substance or mixture

Poisons Schedule	Not Applicable			
Classification [1]	Acute Toxicity (Oral) Category 4, Skin Corrosion/Irritation Category 2, Serious Eye Damage/Eye Irritation Category 2B, Carcinogenicity Category 2, Aerosols Category 1			
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI			

Label elements

Hazard pictogram(s)

Signal word Danger

Hazard statement(s)

Tidadi di diatomoni(o)				
Risk of explosion if heated under confinement.				
Harmful if swallowed.				
Causes skin irritation.				

Version No: 3.3 Page 2 of 14 Issue Date: 19/12/2022 Print Date: 19/12/2022

TensorGrip F20 500ml Aerosol Spray Adhesive

Extremely flammable aerosol. Pressurized container: may burst if heated.

H320	Causes eye irritation.
H351	Suspected of causing cancer.

Precautionary statement(s) Prevention

H222+H229

P201	Obtain special instructions before use.			
P210	ep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking.			
P211	ot spray on an open flame or other ignition source.			
P251	not pierce or burn, even after use.			
P280	Wear protective gloves and protective clothing.			
P264	Wash all exposed external body areas thoroughly after handling.			
P270	Do not eat, drink or smoke when using this product.			

Precautionary statement(s) Response

P308+P313	IF exposed or concerned: Get medical advice/ attention.			
P305+P351+P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.			
P337+P313	If eye irritation persists: Get medical advice/attention.			
P301+P312	SWALLOWED: Call a POISON CENTER/doctor/physician/first aider if you feel unwell.			
P302+P352	IF ON SKIN: Wash with plenty of water and soap.			
P330	Rinse mouth.			
P332+P313	If skin irritation occurs: Get medical advice/attention.			
P362+P364	Take off contaminated clothing and wash it before reuse.			

Precautionary statement(s) Storage

P405	Store locked up.	
P410+P412	Protect from sunlight. Do not expose to temperatures exceeding 50 °C/122 °F.	

Precautionary statement(s) Disposal

P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

SECTION 3 Composition / information on ingredients

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name			
75-09-2	40-60	methylene chloride			
68476-85-7.	30-40	LPG (liquefied petroleum gas)			
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; 4. Classification drawn from C&L * EU IOELVs available				

SECTION 4 First aid measures

Description of first aid measures

If aerosols come in contact with the eyes:

Eye Contact

- Immediately hold the eyelids apart and flush the eye continuously for at least 15 minutes with fresh running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids
- ► Transport to hospital or doctor without delay.
- F Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

In case of cold burns (frost-bite):

- Move casualty into warmth before thawing the affected part; if feet are affected carry if possible
- ▶ Bathe the affected area immediately in luke-warm water (not more than 35 deg C) for 10 to 15 minutes, immersing if possible and without rubbing
- DO NOT apply hot water or radiant heat.
- Apply a clean, dry, light dressing of "fluffed-up" dry gauze bandage If a limb is involved, raise and support this to reduce swelling

Skin Contact

- If an adult is involved and where intense pain occurs provide pain killers such as paracetomol
- Transport to hospital, or doctor
- ▶ Subsequent blackening of the exposed tissue indicates potential of necrosis, which may require amputation.

If solids or aerosol mists are deposited upon the skin:

- Flush skin and hair with running water (and soap if available).
- Remove any adhering solids with industrial skin cleansing cream.
- ▶ Seek medical attention in the event of irritation.

Version No: **3.3** Page **3** of **14** Issue Date: **19/12/2022**

TensorGrip F20 500ml Aerosol Spray Adhesive

Print Date: 19/12/2022

Inhalation

If aerosols, fumes or combustion products are inhaled:

- Remove to fresh air.
- Lay patient down. Keep warm and rested.
- Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
- If breathing is shallow or has stopped, ensure clear airway and apply resuscitation, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary.
- ► Transport to hospital, or doctor.

Ingestion

Not considered a normal route of entry.

- Avoid giving milk or oils.
- Avoid giving alcohol.

Indication of any immediate medical attention and special treatment needed

for intoxication due to Freons/ Halons;

A: Emergency and Supportive Measures

- Maintain an open airway and assist ventilation if necessary
- Treat coma and arrhythmias if they occur. Avoid (adrenaline) epinephrine or other sympathomimetic amines that may precipitate ventricular arrhythmias. Tachyarrhythmias caused by increased myocardial sensitisation may be treated with propranolol, 1-2 mg IV or esmolol 25-100 microgm/kg/min IV.
- Monitor the ECG for 4-6 hours
- B: Specific drugs and antidotes:
- ▶ There is no specific antidote

C: Decontamination

- Inhalation; remove victim from exposure, and give supplemental oxygen if available.
- Ingestion; (a) Prehospital: Administer activated charcoal, if available. DO NOT induce vomiting because of rapid absorption and the risk of abrupt onset CNS depression. (b) Hospital: Administer activated charcoal, although the efficacy of charcoal is unknown. Perform gastric lavage only if the ingestion was very large and recent (less than 30 minutes)
- D: Enhanced elimination:
- ▶ There is no documented efficacy for diuresis, haemodialysis, haemoperfusion, or repeat-dose charcoal.

POISONING and DRUG OVERDOSE, Californian Poison Control System Ed. Kent R Olson; 3rd Edition

- ▶ Do not administer sympathomimetic drugs unless absolutely necessary as material may increase myocardial irritability.
- No specific antidote.
- Because rapid absorption may occur through lungs if aspirated and cause systematic effects, the decision of whether to induce vomiting or not should be made by an attending physician.
- If lavage is performed, suggest endotracheal and/or esophageal control.
- ▶ Danger from lung aspiration must be weighed against toxicity when considering emptying the stomach.
- ▶ Treatment based on judgment of the physician in response to reactions of the patient

For petroleum distillates

- In case of ingestion, gastric lavage with activated charcoal can be used promptly to prevent absorption decontamination (induced emesis or lavage) is controversial and should be considered on the merits of each individual case; of course the usual precautions of an endotracheal tube should be considered prior to lavage, to prevent aspiration.
- Individuals intoxicated by petroleum distillates should be hospitalized immediately, with acute and continuing attention to neurologic and cardiopulmonary function.
- · Positive pressure ventilation may be necessary.
- · Acute central nervous system signs and symptoms may result from large ingestions of aspiration-induced hypoxia.
- After the initial episode, individuals should be followed for changes in blood variables and the delayed appearance of pulmonary oedema and chemical pneumonitis. Such patients should be followed for several days or weeks for delayed effects, including bone marrow toxicity, hepatic and renal impairment Individuals with chronic pulmonary disease will be more seriously impaired, and recovery from inhalation exposure may be complicated.
- · Gastrointestinal symptoms are usually minor and pathological changes of the liver and kidneys are reported to be uncommon in acute intoxications.
- · Chlorinated and non-chlorinated hydrocarbons may sensitize the heart to epinephrine and other circulating catecholamines so that arrhythmias may occur. Careful consideration of this potential adverse effect should precede administration of epinephrine or other cardiac stimulants and the selection of bronchodilators.

BP America Product Safety & Toxicology Department

Treat symptomatically.

As in all cases of suspected poisoning, follow the ABCDEs of emergency medicine (airway, breathing, circulation, disability, exposure), then the ABCDEs of toxicology (antidotes, basics, change absorption, change distribution, change elimination).

For poisons (where specific treatment regime is absent):

BASIC TREATMENT

- ▶ Establish a patent airway with suction where necessary.
- Watch for signs of respiratory insufficiency and assist ventilation as necessary.
- Administer oxygen by non-rebreather mask at 10 to 15 L/min.
- Monitor and treat, where necessary, for pulmonary oedema.
- Monitor and treat, where necessary, for shock.
- Anticipate seizures
- DO NOT use emetics. Where ingestion is suspected rinse mouth and give up to 200 ml water (5 ml/kg recommended) for dilution where patient is able to swallow, has a strong gag reflex and does not drool.

ADVANCED TREATMENT

- ▶ Consider orotracheal or nasotracheal intubation for airway control in unconscious patient or where respiratory arrest has occurred.
- Positive-pressure ventilation using a bag-valve mask might be of use.
- Monitor and treat, where necessary, for arrhythmias.
- Start an IV D5W TKO. If signs of hypovolaemia are present use lactated Ringers solution. Fluid overload might create complications.
- Drug therapy should be considered for pulmonary oedema
- Hypotension with signs of hypovolaemia requires the cautious administration of fluids. Fluid overload might create complications.
- ► Treat seizures with diazepam.
- Proparacaine hydrochloride should be used to assist eye irrigation.

BRONSTEIN, A.C. and CURRANCE, P.L.

EMERGENCY CARE FOR HAZARDOUS MATERIALS EXPOSURE: 2nd Ed. 1994

SECTION 5 Firefighting measures

Extinguishing media

SMALL FIRE:

Water spray, dry chemical or CO2

LARGE FIRE:

Water spray or fog.

Version No: 3.3 Page 4 of 14 Issue Date: 19/12/2022

TensorGrip F20 500ml Aerosol Spray Adhesive

Print Date: 19/12/2022

Special hazards arising from the substrate or mixture

Fire Incompatibility

▶ Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result

Advice for firefighters

GENERAL

- Alert Fire Brigade and tell them location and nature of hazard.
- Wear full body protective clothing with breathing apparatus.
- Fight fire from a safe distance, with adequate cover
- If safe, switch off electrical equipment until vapour fire hazard removed.
- Use water delivered as a fine spray to control fire and cool adjacent area.
- DO NOT approach cylinders suspected to be hot.
- Cool fire exposed cylinders with water spray from a protected location.
- If safe to do so, remove cylinders from path of fire.
- Equipment should be thoroughly decontaminated after use.

Fire Fighting

FIRE FIGHTING PROCEDURES:

- ▶ Excessive pressures may develop in a gas cylinder exposed in a fire; this may result in explosion.
- Cylinders with pressure relief devices may release their contents as a result of fire and the released gas may constitute a further source of hazard for the fire-fighter.
- Cylinders without pressure-relief valves have no provision for controlled release and are therefore more likely to explode if exposed to fire.

FIRE FIGHTING REQUIREMENTS:

- Positive pressure, self-contained breathing apparatus is required for fire-fighting of hazardous materials.
- Full structural fire-fighting (bunker) gear is the minimum acceptable attire.
- The need for proximity, entry and special protective clothing should be determined for each incident, by a competent fire-fighting safety professional

▶ Containers may explode when heated - Ruptured cylinders may rocket May burn but does not ignite easily.

- Fire exposed cylinders may vent contents through pressure relief devices thereby increasing vapour concentration..
- Fire may produce irritating, poisonous or corrosive gases.
- Runoff may create fire or explosion hazard.
- May decompose explosively when heated or involved in fire.
- Contact with gas may cause burns, severe injury and/ or frostbite
- POISONOUS: MAY BE FATAL IF INHALED, SWALLOWED OR ABSORBED THROUGH SKIN

Fire/Explosion Hazard

Decomposition may produce toxic fumes of:

carbon monoxide (CO) carbon dioxide (CO2)

hydrogen chloride

phosgene

other pyrolysis products typical of burning organic material.

Contains low boiling substance: Closed containers may rupture due to pressure buildup under fire conditions.

Vented gas is more dense than air and may collect in pits, basements.

WARNING: Aerosol containers may present pressure related hazards

HAZCHEM

Not Applicable

SECTION 6 Accidental release measures

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

Minor Spills

- Clean up all spills immediately.
- Avoid breathing vapours and contact with skin and eyes.
- Wear protective clothing, impervious gloves and safety glasses. Shut off all possible sources of ignition and increase ventilation.
- ► Wipe up.
- If safe, damaged cans should be placed in a container outdoors, away from all ignition sources, until pressure has dissipated.
- Undamaged cans should be gathered and stowed safely.

Clear area of personnel and move upwind.

- Alert Fire Brigade and tell them location and nature of hazard.
- Wear full body protective clothing with breathing apparatus. Prevent, by all means available, spillage from entering drains or water courses.
- Consider evacuation (or protect in place)

No smoking, naked lights or ignition sources.

Major Spills

- Increase ventilation.
- Stop leak if safe to do so. Water spray or fog may be used to disperse / absorb vapour.
- Contain or absorb spill with sand, earth or vermiculite.
- ► Collect recoverable product into labelled containers for recycling.
- Collect solid residues and seal in labelled drums for disposal.
- Wash area and prevent runoff into drains.

Version No: 3.3 Page 5 of 14 Issue Date: 19/12/2022

TensorGrip F20 500ml Aerosol Spray Adhesive

Print Date: 19/12/2022

- After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using.
- If contamination of drains or waterways occurs, advise emergency services.
- Clear area of all unprotected personnel and move upwind.
- ▶ Alert Emergency Authority and advise them of the location and nature of hazard.
- Wear full body clothing with breathing apparatus.
- Prevent by any means available, spillage from entering drains and water-courses.
- Consider evacuation.
- Increase ventilation.
- No smoking or naked lights within area.
- Stop leak only if safe to so do.
- Water spray or fog may be used to disperse vapour.
- DO NOT enter confined space where gas may have collected.
- Keep area clear until gas has dispersed.
- Remove leaking cylinders to a safe place
- Fit vent pipes. Release pressure under safe, controlled conditions
- · Burn issuing gas at vent pipes.
- DO NOT exert excessive pressure on valve; DO NOT attempt to operate damaged valve.
- Clear area of personnel and move upwind.
- Alert Fire Brigade and tell them location and nature of hazard.
- May be violently or explosively reactive.
- Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water courses
- No smoking, naked lights or ignition sources.
- Increase ventilation.
- Stop leak if safe to do so.
- Water spray or fog may be used to disperse / absorb vapour.
- Absorb or cover spill with sand, earth, inert materials or vermiculite.
- If safe, damaged cans should be placed in a container outdoors, away from ignition sources, until pressure has dissipated.
- Undamaged cans should be gathered and stowed safely.
- Collect residues and seal in labelled drums for disposal.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 Handling and storage

Precautions for safe handling

Radon and its radioactive decay products are hazardous if inhaled or ingested

- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area
- Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- Avoid smoking, naked lights or ignition sources.
- Avoid contact with incompatible materials. Safe handling
 - When handling, DO NOT eat, drink or smoke.
 - DO NOT incinerate or puncture aerosol cans
 - ▶ DO NOT spray directly on humans, exposed food or food utensils.
 - Avoid physical damage to containers.
 - Always wash hands with soap and water after handling.
 - Work clothes should be laundered separately.
 - Use good occupational work practice.
 - Observe manufacturer's storage and handling recommendations contained within this SDS.
 - Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.
 - Cylinders should be stored in a purpose-built compound with good ventilation, preferably in the open.
 - Such compounds should be sited and built in accordance with statutory requirements
 - The storage compound should be kept clear and access restricted to authorised personnel only.
 - Cylinders stored in the open should be protected against rust and extremes of weather
 - Cylinders in storage should be properly secured to prevent toppling or rolling Cylinder valves should be closed when not in use.

 - Where cylinders are fitted with valve protection this should be in place and properly secured.
 - Gas cylinders should be segregated according to the requirements of the Dangerous Goods Act.
 - Preferably store full and empty cylinders separately.
 - Check storage areas for hazardous concentrations of gases prior to entry. Full cylinders should be arranged so that the oldest stock is used first.
 - Cylinders in storage should be checked periodically for general condition and leakage.
 - Protect cylinders against physical damage. Move and store cylinders correctly as instructed for their manual handling.

NOTE: A 'G' size cylinder is usually too heavy for an inexperienced operator to raise or lower.

Conditions for safe storage, including any incompatibilities

Suitable container

Storage incompatibility

Other information

- DO NOT use aluminium or galvanised containers
- Aerosol dispenser
 - ▶ Check that containers are clearly labelled.

Methylene chloride

- b is a combustible liquid under certain circumstances even though there is no measurable flash point and it is difficult to ignite
- its is flammable in ambient air in the range 12-23%; increased oxygen content can greatly enhance fire and explosion potential

contact with hot surfaces and elevated temperatures can form fumes of hydrogen chloride and phosgene

- reacts violently with active metals, aluminium, lithium, methanol,, peroxydisulfuryl difluoride, potassium, potassium tert-butoxide, sodium
- forms explosive mixtures with nitric acid
- is incompatible with strong oxidisers, strong caustics, alkaline earths and alkali metals
- attacks some plastics, coatings and rubber
- may generate electrostatic charge due to low conductivity

Version No: **3.3** Page **6** of **14** Issue Date: **19/12/2022**

TensorGrip F20 500ml Aerosol Spray Adhesive

Print Date: 19/12/2022

Low molecular weight alkanes:

- May react violently with strong oxidisers, chlorine, chlorine dioxide, dioxygenyl tetrafluoroborate.
- ▶ May react with oxidising materials, nickel carbonyl in the presence of oxygen, heat.
- Are incompatible with nitronium tetrafluoroborate(1-), halogens and interhalogens
- may generate electrostatic charges, due to low conductivity, on flow or agitation.
- Avoid flame and ignition sources

Redox reactions of alkanes, in particular with oxygen and the halogens, are possible as the carbon atoms are in a strongly reduced condition.

Reaction with oxygen (if present in sufficient quantity to satisfy the reaction stoichiometry) leads to combustion without any smoke, producing carbon dioxide and water. Free radical halogenation reactions occur with halogens, leading to the production of haloalkanes. In addition, alkanes have been shown to interact with, and bind to, certain transition metal complexes

Interaction between chlorine and ethane over activated carbon at 350 deg C has caused explosions, but added carbon dioxide reduces the risk. The violent interaction of liquid chlorine injected into ethane at 80 deg C/10 bar becomes very violent if ethylene is also present A mixture prepared at -196 deg C with either methane or ethane exploded when the temp was raised to -78 deg C. Addition of nickel carbonyl to an n-butane-oxygen mixture causes an explosion at 20-40 deg C.

Alkanes will react with steam in the presence of a nickel catalyst to give hydrogen.

Propane:

- reacts violently with strong oxidisers, barium peroxide, chlorine dioxide, dichlorine oxide, fluorine etc.
- liquid attacks some plastics, rubber and coatings
- ▶ may accumulate static charges which may ignite its vapours
- Segregate from alcohol, water.
- Avoid reaction with oxidising agents
- Compressed gases may contain a large amount of kinetic energy over and above that potentially available from the energy of reaction produced by the gas in chemical reaction with other substances

SECTION 8 Exposure controls / personal protection

Control parameters

Occupational Exposure Limits (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
Australia Exposure Standards	methylene chloride	Methylene chloride	50 ppm / 174 mg/m3	Not Available	Not Available	Not Available
Australia Exposure Standards	LPG (liquefied petroleum gas)	LPG (liquified petroleum gas)	1000 ppm / 1800 mg/m3	Not Available	Not Available	Not Available

Emergency Limits

Ingredient	TEEL-1	TEEL-2	TEEL-3
methylene chloride	Not Available	Not Available	Not Available
LPG (liquefied petroleum gas)	65,000 ppm	2.30E+05 ppm	4.00E+05 ppm

Ingredient	Original IDLH	Revised IDLH
methylene chloride	2,300 ppm	Not Available
LPG (liquefied petroleum gas)	2,000 ppm	Not Available

Exposure controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure.

- Femployees exposed to confirmed human carcinogens should be authorized to do so by the employer, and work in a regulated area.
- Work should be undertaken in an isolated system such as a "glove-box". Employees should wash their hands and arms upon completion of the assigned task and before engaging in other activities not associated with the isolated system.
- Within regulated areas, the carcinogen should be stored in sealed containers, or enclosed in a closed system, including piping systems, with any sample ports or openings closed while the carcinogens are contained within.
- Open-vessel systems are prohibited.
- Each operation should be provided with continuous local exhaust ventilation so that air movement is always from ordinary work areas to the operation.
- Exhaust air should not be discharged to regulated areas, non-regulated areas or the external environment unless decontaminated. Clean make-up air should be introduced in sufficient volume to maintain correct operation of the local exhaust system.
- For maintenance and decontamination activities, authorized employees entering the area should be provided with and required to wear clean, impervious garments, including gloves, boots and continuous-air supplied hood. Prior to removing protective garments the employee should undergo decontamination and be required to shower upon removal of the garments and hood.
- Except for outdoor systems, regulated areas should be maintained under negative pressure (with respect to non-regulated areas).
- Local exhaust ventilation requires make-up air be supplied in equal volumes to replaced air.
- Laboratory hoods must be designed and maintained so as to draw air inward at an average linear face velocity of 0.76 m/sec with a minimum of 0.64 m/sec. Design and construction of the fume hood requires that insertion of any portion of the employees body, other than hands and arms, be disallowed.

Personal protection

Appropriate engineering

controls

Version No: **3.3** Page **7** of **14** Issue Date: **19/12/2022**

TensorGrip F20 500ml Aerosol Spray Adhesive

Print Date: 19/12/2022

Eye and face protection

- Chemical goggles.
- Full face shield may be required for supplementary but never for primary protection of eyes.
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

Skin protection

See Hand protection below

- ·
 - OTHERWISE:
 - For potentially moderate exposures:
- Hands/feet protection
- Wear general protective gloves, eg. light weight rubber gloves.

▶ No special equipment needed when handling small quantities.

- For potentially heavy exposures:
- ▶ Wear chemical protective gloves, eg. PVC. and safety footwear.
- Insulated gloves:

NOTE: Insulated gloves should be loose fitting so that may be removed quickly if liquid is spilled upon them. Insulated gloves are not made to permit hands to be placed in the liquid; they provide only short-term protection from accidental contact with the liquid.

Body protection

See Other protection below

- Employees working with confirmed human carcinogens should be provided with, and be required to wear, clean, full body protective clothing (smocks, coveralls, or long-sleeved shirt and pants), shoe covers and gloves prior to entering the regulated area. [AS/NZS ISO 6529:2006 or national equivalent]
- Employees engaged in handling operations involving carcinogens should be provided with, and required to wear and use half-face filter-type respirators with filters for dusts, mists and fumes, or air purifying canisters or cartridges. A respirator affording higher levels of protection may be substituted. [AS/NZS 1715 or national equivalent]
- Emergency deluge showers and eyewash fountains, supplied with potable water, should be located near, within sight of, and on the same level with locations where direct exposure is likely.

Other protection

- Prior to each exit from an area containing confirmed human carcinogens, employees should be required to remove and leave protective clothing and equipment at the point of exit and at the last exit of the day, to place used clothing and equipment in impervious containers at the point of exit for purposes of decontamination or disposal. The contents of such impervious containers must be identified with suitable labels. For maintenance and decontamination activities, authorized employees entering the area should be provided with and required to wear clean, impervious garments, including gloves, boots and continuous-air supplied hood.
- Prior to removing protective garments the employee should undergo decontamination and be required to shower upon removal of the garments and hood.

No special equipment needed when handling small quantities.

OTHERWISE:

- Overalls.
- Skin cleansing cream.
- Eyewash unit.
- Do not spray on hot surfaces.

Recommended material(s)

GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the:

"Forsberg Clothing Performance Index".

The effect(s) of the following substance(s) are taken into account in the *computer-generated* selection:

TensorGrip F20 500ml Aerosol Spray Adhesive

Material	СРІ
PE/EVAL/PE	Α
PVA	A
TEFLON	В
BUTYL	С
CPE	С
NATURAL RUBBER	С
NEOPRENE	С
VITON	С
VITON/BUTYL	С
VITON/CHLOROBUTYL	С

* CPI - Chemwatch Performance Index

A: Best Selection

B: Satisfactory; may degrade after 4 hours continuous immersion

C: Poor to Dangerous Choice for other than short term immersion

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -

* Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

Respiratory protection

Type AX Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 5 x ES	AX-AUS / Class	-	AX-PAPR-AUS / Class 1
up to 25 x ES	Air-line*	AX-2	AX-PAPR-2
up to 50 x ES	-	AX-3	-
50+ x ES	-	Air-line**	-

^ - Full-face

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

- Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content.
- The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate.
- Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used

Selection of the Class and Type of respirator will depend upon the level of breathing zone contaminant and the chemical nature of the contaminant. Protection Factors (defined as the ratio of contaminant outside and inside the mask) may also be important.

Version No: 3.3 Page 8 of 14 Issue Date: 19/12/2022 Print Date: 19/12/2022

TensorGrip F20 500ml Aerosol Spray Adhesive

minimum protection factor	concentration present in air p.p.m. (by volume)	Respirator	Respirator
up to 10	1000	AX-AUS / Class 1	-
up to 50	1000	-	AX-AUS / Class 1
up to 50	5000	Airline *	-
up to 100	5000	-	AX-2
up to 100	10000	-	AX-3
100+		-	Airline**

^{** -} Continuous-flow or positive pressure demand.

A(All classes) = Organic vapours, B AUS or B1 = Acid gases, B2 = Acid gas or hydrogen $cyanide(HCN),\,B3=Acid\,gas\,\,or\,\,hydrogen\,\,cyanide(HCN),\,E=Sulfur\,\,dioxide(SO2),\,G=1$ Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 deg C)

SECTION 9 Physical and chemical properties

In	format	ion o	n basi	c pr	iysical	and	chemical	properties
----	--------	-------	--------	------	---------	-----	----------	------------

Information on basic physical	and chemical properties		
Appearance	Coloured		
Physical state	Liquified Gas	Relative density (Water = 1)	0.837
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Available
pH (as supplied)	Not Available	Decomposition temperature (°C)	Not Available
Melting point / freezing point (°C)	-97	Viscosity (cSt)	Not Available
Initial boiling point and boiling range (°C)	40	Molecular weight (g/mol)	Not Available
Flash point (°C)	-104	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available
Flammability	HIGHLY FLAMMABLE.	Oxidising properties	Not Available
Upper Explosive Limit (%)	Not Available	Surface Tension (dyn/cm or mN/m)	Not Available
Lower Explosive Limit (%)	Not Available	Volatile Component (%vol)	Not Available
Vapour pressure (kPa)	46.86	Gas group	Not Available
Solubility in water	Immiscible	pH as a solution (1%)	Not Available
Vapour density (Air = 1)	2.93	VOC g/L	687.01

SECTION 10 Stability and reactivity

Reactivity	See section 7
Chemical stability	 Elevated temperatures. Presence of open flame. Product is considered stable. Hazardous polymerisation will not occur. Presence of heat source Presence of an ignition source
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 Toxicological information

Version No: **3.3** Page **9** of **14** Issue Date: **19/12/2022**

TensorGrip F20 500ml Aerosol Spray Adhesive

Print Date: 19/12/2022

Inhalation of aerosols (mists, fumes), generated by the material during the course of normal handling, may be harmful. The material is not thought to produce respiratory irritation (as classified by EC Directives using animal models). Nevertheless inhalation of the material, especially for prolonged periods, may produce respiratory discomfort and occasionally, distress Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by sleepiness, reduced alertness, loss of reflexes, lack of co-ordination, and vertigo. Inhalation of toxic gases may cause: Central Nervous System effects including depression, headache, confusion, dizziness, stupor, coma and seizures; respiratory: acute lung swellings, shortness of breath, wheezing, rapid breathing, other symptoms and respiratory arrest; heart: collapse, irregular heartbeats and cardiac arrest; qastrointestinal: irritation, ulcers, nausea and vomiting (may be bloody), and abdominal pain. Inhalation hazard is increased at higher temperatures. Inhalation of high concentrations of gas/vapour causes lung irritation with coughing and nausea, central nervous depression with headache and Inhaled dizziness, slowing of reflexes, fatigue and inco-ordination. Material is highly volatile and may quickly form a concentrated atmosphere in confined or unventilated areas. The vapour may displace and replace air in breathing zone, acting as a simple asphyxiant. This may happen with little warning of overexposure. The use of a quantity of material in an unventilated or confined space may result in increased exposure and an irritating atmosphere developing. Before starting consider control of exposure by mechanical ventilation. WARNING: Intentional misuse by concentrating/inhaling contents may be lethal. Inhalation exposure may cause susceptible individuals to show change in heart beat rhythm i.e. cardiac arrhythmia. Exposures must be terminated. Acute intoxication by halogenated aliphatic hydrocarbons appears to take place over two stages. Signs of a reversible narcosis are evident in the first stage and in the second stage signs of injury to organs may become evident, a single organ alone is (almost) never involved Exposure to hydrocarbons may result in irregularity of heart beat. Symptoms of moderate poisoning may include dizziness, headache, nausea. Not normally a hazard due to physical form of product. Considered an unlikely route of entry in commercial/industrial environments Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may Ingestion produce serious damage to the health of the individual. Central nervous system (CNS) depression may include general discomfort, symptoms of giddiness, headache, dizziness, nausea, anaesthetic effects, slowed reaction time, slurred speech and may progress to unconsciousness. Serious poisonings may result in respiratory depression and may be fatal. The material may accentuate any pre-existing dermatitis condition Spray mist may produce discomfort Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. Vapourising liquid causes rapid cooling and contact may cause cold burns, frostbite, even through normal gloves. Frozen skin tissues are Skin Contact painless and appear waxy and yellow. Signs and symptoms of frost-bite may include "pins and needles", paleness followed by numbness, a hardening an stiffening of the skin, a progression of colour changes in the affected area, (first white, then mottled and blue and eventually black; on recovery, red, hot, painful and blistered). Skin contact with the material may damage the health of the individual; systemic effects may result following absorption. The material may cause severe inflammation of the skin either following direct contact or after a delay of some time. Repeated exposure can cause contact dermatitis which is characterised by redness, swelling and blistering. Not considered to be a risk because of the extreme volatility of the gas. Eye There is some evidence that material may produce eye irritation in some persons and produce eye damage 24 hours or more after instillation. Moderate inflammation may be expected with redness; conjunctivitis may occur with prolonged exposure. Strong evidence exists that this substance may cause irreversible mutations (though not lethal) even following a single exposure. There is sufficient evidence to suggest that this material directly causes cancer in humans. Toxic: danger of serious damage to health by prolonged exposure through inhalation, in contact with skin and if swallowed. This material can cause serious damage if one is exposed to it for long periods. It can be assumed that it contains a substance which can Chronic produce severe defects. Ample evidence from experiments exists that there is a suspicion this material directly reduces fertility. Constant or exposure over long periods to mixed hydrocarbons may produce stupor with dizziness, weakness and visual disturbance, weight loss and anaemia, and reduced liver and kidney function. Skin exposure may result in drying and cracking and redness of the skin. Main route of exposure to the gas in the workplace is by inhalation.

ensorGrip F20 500ml Aerosol	TOXICITY	IRRITATION	
Spray Adhesive	Not Available	Not Available	
	TOXICITY	IRRITATION	
	dermal (rat) LD50: >2000 mg/kg ^[2]	Eye(rabbit): 162 mg - moderate	
methylene chloride	Inhalation(Rat) LC50: 76 mg/L4h ^[2]	Eye(rabbit): 500 mg/24hr - mild	
	Oral (Rat) LD50; 1600 mg/kg ^[2]	Skin (rabbit): 100mg/24hr-moderate	
		Skin (rabbit): 810 mg/24hr-SEVERE	
	TOXICITY	IRRITATION	
LPG (liquefied petroleum gas)	Inhalation(Rat) LC50: 658 mg/l4h ^[2]	Not Available	
Legend:	Value obtained from Europe ECHA Registered Substa specified data extracted from RTECS - Register of Toxic	ances - Acute toxicity 2. Value obtained from manufacturer's SDS. Unless otherwise : Effect of chemical Substances	

TensorGrip F20 500ml Aerosol Spray Adhesive

Laboratory (in vitro) and animal studies show, exposure to the material may result in a possible risk of irreversible effects, with the possibility of producing mutation.

Version No: **3.3** Page **10** of **14** Issue Date: **19/12/2022**

TensorGrip F20 500ml Aerosol Spray Adhesive

Print Date: 19/12/2022

Inhalation (human) TCLo: 500 ppm/ 1 y - I Eye(rabbit): 10 mg - mild The material may produce moderate eye irritation leading to inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis METHYLENE CHLORIDE The material may cause severe skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin. Repeated exposures may produce severe ulceration WARNING: This substance has been classified by the IARC as Group 2A: Probably Carcinogenic to Humans. LPG (LIQUEFIED PETROLEUM No significant acute toxicological data identified in literature search, inhalation of the gas TensorGrip F20 500ml Aerosol Spray Adhesive & METHYLENE CHLORIDE **Acute Toxicity** Carcinogenicity × Skin Irritation/Corrosion Reproductivity × Serious Eye Damage/Irritation STOT - Single Exposure Respiratory or Skin × STOT - Repeated Exposure × sensitisation Mutagenicity × **Aspiration Hazard**

Legend:

X − Data either not available or does not fill the criteria for classification
 ✓ − Data available to make classification

SECTION 12 Ecological information

Toxicity

T Oct. F00 F00! 4	Endpoint	Test Duration (hr)	Species	Value	Source
TensorGrip F20 500ml Aerosol Spray Adhesive	Not Available	Not Available	Not Available	Not Available	Not Available
	Endpoint	Test Duration (hr)	Species	Value	Source
	BCF	1008h	Fish	2-5.4	7
	EC50(ECx)	96h	Algae or other aquatic plants	0.98mg/l	4
methylene chloride	EC50	72h	Algae or other aquatic plants	202-286mg/l	4
	EC50	48h	Crustacea	150-218mg/l	4
	LC50	96h	Fish	2-3.3mg/l	4
	EC50	96h	Algae or other aquatic plants	0.98mg/l	4
	Endpoint	Test Duration (hr)	Species	Value	Source
	EC50(ECx)	96h	Algae or other aquatic plants	7.71mg/l	2
LPG (liquefied petroleum gas)	LC50	96h	Fish	24.11mg/l	2
	EC50	96h	Algae or other aquatic plants	7.71mg/l	2
Legend:	Ecotox databa		RHA Registered Substances - Ecotoxicological Informati Aquatic Hazard Assessment Data 6. NITE (Japan) - Bi		

Harmful to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters.

Wastes resulting from use of the product must be disposed of on site or at approved waste sites.

For petroleum distillates:

Environmental fate:

When petroleum substances are released into the environment, four major fate processes will take place: dissolution in water, volatilization, biodegradation and adsorption. These processes will cause changes in the composition of these UVCB substances. In the case of spills on land or water surfaces, photodegradation-another fate process-can also be significant.

As noted previously, the solubility and vapour pressure of components within a mixture will differ from those of the component alone. These interactions are complex for complex UVCBs such as petroleum hydrocarbons.

Each of the fate processes affects hydrocarbon families differently. Aromatics tend to be more water-soluble than aliphatics of the same carbon number, whereas aliphatics tend to be more volatile. Thus, when a petroleum mixture is released into the environment, the principal water contaminants are likely to be aromatics, whereas aliphatics will be the principal air contaminants. The trend in volatility by component class is as follows: alkenes = alkanes > aromatics = cycloalkanes.

The most soluble and volatile components have the lowest molecular weight; thus there is a general shift to higher molecular weight components in residual materials. Biodegradation:

Biodegradation is almost always operative when petroleum mixtures are released into the environment. It has been widely demonstrated that nearly all soils and sediments have populations of bacteria and other organisms capable of degrading petroleum hydrocarbons Degradation occurs both in the presence and absence of oxygen. Two key factors that determine degradation rates are oxygen supply and molecular structure. In general, degradation is more rapid under aerobic conditions. Decreasing trends in degradation rates according to structure are as follows:

- (1) n-alkanes, especially in the C10-C25 range, which are degraded readily;
- (2) isoalkanes;
- (3) alkenes;
- (4) benzene, toluene, ethylbenzene, xylenes (BTEX) (when present in concentrations that are not toxic to microorganisms);
- (5) monoaromatics;
- (6) polynuclear (polycyclic) aromatic hydrocarbons (PAHs); and
- (7) higher molecular weight cycloalkanes (which may degrade very slowly.

Three weathering processes-dissolution in water, volatilization and biodegradation-typically result in the depletion of the more readily soluble, volatile and degradable compounds and the accumulation of those most resistant to these processes in residues.

When large quantities of a hydrocarbon mixture enter the soil compartment, soil organic matter and other sorption sites in soil are fully saturated and the hydrocarbons will begin to

Version No: 3.3 Page 11 of 14 Issue Date: 19/12/2022

TensorGrip F20 500ml Aerosol Spray Adhesive

Print Date: 19/12/2022

form a separate phase (a non-aqueous phase liquid, or NAPL) in the soil. At concentrations below the retention capacity for the hydrocarbon in the soil, the NAPL will be immobile this is referred to as residual NAPL. Above the retention capacity, the NAPL becomes mobile and will move within the soil Bioaccumulation:

Bioaccumulation potential was characterized based on empirical and/or modelled data for a suite of petroleum hydrocarbons expected to occur in petroleum substances.

Bioaccumulation factors (BAFs) are the preferred metric for assessing the bioaccumulation potential of substances, as the bioconcentration factor (BCF) may not adequately account for the bioaccumulation potential of substances via the diet, which predominates for substances with log Kow > \sim 4.5

In addition to fish BCF and BAF data, bioaccumulation data for aquatic invertebrate species were also considered. Biota-sediment/soil accumulation factors (BSAFs), trophic magnification factors and biomagnification factors were also considered in characterizing bioaccumulation potential.

Overall, there is consistent empirical and predicted evidence to suggest that the following components have the potential for high bioaccumulation, with BAF/BCF values greater than 5000: C13–C15 isoalkanes, C12 alkenes, C12–C15 one-ring cycloalkanes, C12 and C15 two-ring cycloalkanes, C14 polycycloalkanes, C15 one-ring aromatics, C15 and C20 cycloalkane monoaromatics, C12-C13 diaromatics, C20 cycloalkane diaromatics, and C14 and C20 three-ring PAHs

These components are associated with a slow rate of metabolism and are highly lipophilic. Exposures from water and diet, when combined, suggest that the rate of uptake would exceed that of the total elimination rate. Most of these components are not expected to biomagnify in aquatic or terrestrial foodwebs, largely because a combination of metabolism, low dietary assimilation efficiency and growth dilution allows the elimination rate to exceed the uptake rate from the diet; however,

one study suggests that some alkyl-PAHs may biomagnify. While only BSAFs were found for some PAHs, it is possible that BSAFs will be > 1 for invertebrates, given that they do not have the same metabolic competency as fish.

In general, fish can efficiently metabolize aromatic compounds. There is some evidence that alkylation increases bioaccumulation of naphthalene but it is not known if this can be generalized to larger PAHs or if any potential increase in bioaccumulation due to alkylation will be sufficient to exceed a BAF/BCF of 5000.

Some lower trophic level organisms (i.e., invertebrates) appear to lack the capacity to efficiently metabolize aromatic compounds, resulting in high bioaccumulation potential for some aromatic components as compared to fish.

This is the case for the C14 three-ring PAH, which was bioconcentrated to a high level (BCF > 5000) by invertebrates but not by fish. There is potential for such bioaccumulative components to reach toxic levels in organisms if exposure is continuous and of sufficient magnitude, though this is unlikely in the water column following a spill scenario due to relatively rapid dispersal

Bioaccumulation of aromatic compounds might be lower in natural environments than what is observed in the laboratory. PAHs may sorb to organic material suspended in the water column (dissolved humic material), which decreases their overall bioavailability primarily due to an increase in size. This has been observed with fish Ecotoxicity

Diesel fuel studies in salt water are available. The values varied greatly for aquatic species such as rainbow trout and Daphnia magna, demonstrating the inherent variability of diesel fuel compositions and its effects on toxicity. Most experimental acute toxicity values are above 1 mg/L. The lowest 48-hour LC50 for salmonids was 2.4 mg/L. Daphnia magna had a 24-hour LC50 of 1.8 mg/. The values varied greatly for aquatic species such as rainbow trout and Daphnia magna, demonstrating the inherent variability of diesel fuel compositions and its effects on toxicity. Most experimental acute toxicity values are above 1 mg/L. The lowest 48-hour LC50 for salmonids was 2.4 mg/L. Daphnia magna had a 24-hour LC50 of 1.8 ma/L

The tropical mysid Metamysidopsis insularis was shown to be very sensitive to diesel fuel, with a 96-hour LC50 value of 0.22 mg/L this species has been shown to be as sensitive as temperate mysids to toxicants. However, However this study used nominal concentrations, and therefore was not considered acceptable. In another study involving diesel fuel, the effect on brown or common shrimp (Crangon crangon) a 96-hour LC50 of 22 mg/L was determined. A "gas oil" was also tested and a 96-hour LC50 of 12 mg/L was determined The steady state cell density of marine phytoplankton decreased with increasing concentrations of diesel fuel, with different sensitivities between species . The diatom Phaeodactylum tricornutum showed a 20% decrease in cell density in 24 hours following a 3 mg/L exposure with a 24-hour no-observed effect concentration (NOEC) of 2.5 mg/L. The microalga Isochrysis galbana was more tolerant to diesel fuel, with a 24-hour lowest-observed-effect concentration (LOEC) of 26 mg/L (14% decrease in cell density), and a NOEC of 25 mg/L. Finally, the green algae Chlorella salina was relatively insensitive to diesel fuel contamination, with a 24-hour LOEC of 170 mg/L (27% decrease in cell density), and a NOEC of 160 mg/L . All populations of phytoplankton returned to a steady state within 5 days of exposure

In sandy soils, earthworm (Eisenia fetida) mortality only occurred at diesel fuel concentrations greater than 10 000 mg/kg, which was also the concentration at which sub-lethal weight loss was recorded

Nephrotoxic effects of diesel fuel have been documented in several animal and human studies. Some species of birds (mallard ducks in particular) are generally resistant to the toxic effects of petrochemical ingestion, and large amounts of petrochemicals are needed in order to cause direct mortality

For Methylene Chloride: Log Kow: 1.25; Log Koc: 1.68; Log Kom: 1.44; Henry's atm m3 /mol: 2.68E-03; Henry s Law Constant: 0.002 atm/m3/mol; BCF: 5.

Atmospheric Fate: Methylene chloride is a volatile liquid that tends to evaporate to the atmosphere from water and soil. The main degradation pathway for methylene chloride in air is via reactions with hydroxyl radicals the average atmospheric lifetime is estimated to be 130 days. Because this degradation pathway is relatively slow, methylene chloride may become widely dispersed but, is not likely to accumulate in the atmosphere. The small amount of methylene chloride which reaches the stratosphere, (about 1%), may undergo direct breakdown by sunlight; however, this is not expected to occur in the troposphere. Reactions of methylene chloride with ozone or other common atmospheric species, (e.g., oxygen atoms, chlorine atoms, and nitrate radicals), are not believed to contribute to its breakdown.

Terrestrial Fate: The substance will evaporate rapidly from moist soil and does not sorb strongly to soil or sediment. Methylene chloride is likely to be highly mobile in soil and is expected to leach to groundwater. Biological breakdown is dependent on soil type, substrate concentration, and if the chemical gains or loses electrons, (redox reactions). The substance has been reported to be degraded in both oxygenated and low oxygen soils and degradation appears to accelerate in the presence of elevated levels of organic carbon. Methylene chloride has a low tendency to absorb to soil; therefore, there is a potential for leaching to groundwater. The substance is expected to evaporate from dry/moist soil. Aquatic Fate: Methylene chloride will evaporate rapidly from water, however; evaporation rates vary with rate of mixing, wind speed, temperature, and other factors. The substance slowly breaks down in neutral pH water, with an experimental half-life of 18 months @ 25 C. This reaction rate varies greatly with changes in temperature and pH it has been estimated that the same reaction in acidic solutions would take 700 years. Oxygenated and non-oxygenated biological breakdown may be important fate processes for methylene chloride in water. Methylene chloride has been observed to undergo degradation at a rapid rate in the presence of oxygen.

Ecotoxicity: Only a few valid acute toxicity data, and no results from long-term studies in marine species, are available for this substance. Available data in marine species do not indicate a marked difference in the sensitivity of marine and freshwater species to this substance. Methylene chloride is moderately toxic to the common mumnichog, daggerblade grass shrimp, and fathead minnow. The substance has low toxicity to Daphnia magna water fleas. Methylene chloride is not expected to accumulate/concentrate in aquatic organisms.

For Propane: Koc 460. log

Henry's Law constant of 7.07x10-1 atm-cu m/mole, derived from its vapour pressure, 7150 mm Hg, and water solubility, 62.4 mg/L. Estimated BCF: 13.1.

Terrestrial Fate: Propane is expected to have moderate mobility in soil. Volatilization from moist soil surfaces is expected to be an important fate process. Volatilization from dry soil surfaces is based vapor pressure. Biodegradation may be an important fate process in soil and sediment.

Aquatic Fate: Propane is expected to adsorb to suspended solids and sediment. Volatilization from water surfaces is expected and half-lives for a model river and model lake are estimated to be 41 minutes and 2.6 days, respectively. Biodegradation may not be an important fate process in water.

Ecotoxicity: The potential for bioconcentration in aquatic organisms is low.

Atmospheric Fate: Propane is expected to exist solely as a gas in the ambient atmosphere. Gas-phase propane is degraded in the atmosphere by reaction with photochemicallyproduced hydroxyl radicals; the half-life for this reaction in air is estimated to be 14 days and is not expected to be susceptible to direct photolysis by sunlight.

DO NOT discharge into sewer or waterways

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
methylene chloride	LOW (Half-life = 56 days)	HIGH (Half-life = 191 days)

Bioaccumulative potential

Ingredient	Bioaccumulation
methylene chloride	LOW (BCF = 40)

Mobility in soil

Ingredient Mobility	

Version No: 3.3 Page 12 of 14 Issue Date: 19/12/2022 Print Date: 19/12/2022

TensorGrip F20 500ml Aerosol Spray Adhesive

Ingredient	Mobility
methylene chloride	LOW (KOC = 23.74)

SECTION 13 Disposal considerations

Waste treatment methods

Product / Packaging disposal

- ▶ DO NOT allow wash water from cleaning or process equipment to enter drains.
- ▶ It may be necessary to collect all wash water for treatment before disposal.
- ▶ In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Where in doubt contact the responsible authority.
- ▶ Consult State Land Waste Management Authority for disposal.
- Discharge contents of damaged aerosol cans at an approved site.
- Allow small quantities to evaporate.
- ► DO NOT incinerate or puncture aerosol cans.
- ▶ Bury residues and emptied aerosol cans at an approved site.

SECTION 14 Transport information

Labels Required

Marine Pollutant	NO
HAZCHEM	Not Applicable

Land transport (ADG)

UN number	1950		
UN proper shipping name	AEROSOLS (contains LPG (liquefied petroleum gas))		
Transport hazard class(es)	Class 2.1 Subrisk 6.1		
Packing group	Not Applicable		
Environmental hazard	Not Applicable		
Special precautions for user	Special provisions 63 190 277 327 344 381 Limited quantity 120ml		

Air transport (ICAO-IATA / DGR)

UN number	1950			
UN proper shipping name	Aerosols, flammable, containing substances in Division 6.1, Packing Group III (contains LPG (liquefied petroleum gas))			
Transport hazard class(es)	ICAO/IATA Class 2.1 ICAO / IATA Subrisk 6.1 ERG Code 10P			
Packing group	Not Applicable	Not Applicable		
Environmental hazard	Not Applicable			
Special precautions for user	Special provisions Cargo Only Packing Instructions Cargo Only Maximum Qty / Pack Passenger and Cargo Packing Instructions Passenger and Cargo Maximum Qty / Pack Passenger and Cargo Limited Quantity Packing Instructions Passenger and Cargo Limited Maximum Qty / Pack		A145 A167 A802 203 150 kg 203 75 kg Y203 30 kg G	

Sea transport (IMDG-Code / GGVSee)

UN number	1950			
UN proper shipping name	AEROSOLS (cont	AEROSOLS (contains LPG (liquefied petroleum gas))		
Transport hazard class(es)	IMDG Class IMDG Subrisk	6.1		
Packing group	Not Applicable			

Version No: 3.3 Page **13** of **14** Issue Date: 19/12/2022 Print Date: 19/12/2022

TensorGrip F20 500ml Aerosol Spray Adhesive

Environmental hazard	Not Applicable		
	EMS Number	F-D, S-U	
Special precautions for user	Special provisions	63 190 277 327 344 381 959	
	Limited Quantities	120 ml	

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code

Product name	Group
methylene chloride	Not Available
LPG (liquefied petroleum gas)	Not Available

Transport in bulk in accordance with the ICG Code

Product name	Ship Type
methylene chloride	Not Available
LPG (liquefied petroleum gas)	Not Available

SECTION 15 Regulatory information

Safety, health and environmental regulations / legislation specific for the substance or mixture

methylene chloride is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) -

Australian Inventory of Industrial Chemicals (AIIC)

Chemical Footprint Project - Chemicals of High Concern List

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs - Group 2A: Probably carcinogenic to humans

LPG (liquefied petroleum gas) is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australian Inventory of Industrial Chemicals (AIIC)

Chemical Footprint Project - Chemicals of High Concern List

National Inventory Status

National Inventory	Status
Australia - AIIC / Australia Non-Industrial Use	Yes
Canada - DSL	Yes
Canada - NDSL	No (methylene chloride; LPG (liquefied petroleum gas))
China - IECSC	Yes
Europe - EINEC / ELINCS / NLP	Yes
Japan - ENCS	Yes
Korea - KECI	Yes
New Zealand - NZIoC	Yes
Philippines - PICCS	Yes
USA - TSCA	Yes
Taiwan - TCSI	Yes
Mexico - INSQ	Yes
Vietnam - NCI	Yes
Russia - FBEPH	Yes
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration.

SECTION 16 Other information

Revision Date	19/12/2022
Initial Date	31/03/2022

SDS Version Summary

Version	Date of Update	Sections Updated
2.3	19/12/2022	Classification, Ingredients, Physical Properties, Transport Information

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Version No: 3.3 Page **14** of **14** Issue Date: 19/12/2022

TensorGrip F20 500ml Aerosol Spray Adhesive

Print Date: 19/12/2022

Definitions and abbreviations

PC-TWA: Permissible Concentration-Time Weighted Average

PC-STEL: Permissible Concentration-Short Term Exposure Limit

IARC: International Agency for Research on Cancer

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit。

IDLH: Immediately Dangerous to Life or Health Concentrations

ES: Exposure Standard OSF: Odour Safety Factor

NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level

TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value

BCF: BioConcentration Factors BEI: Biological Exposure Index

AIIC: Australian Inventory of Industrial Chemicals

DSL: Domestic Substances List

NDSL: Non-Domestic Substances List

IECSC: Inventory of Existing Chemical Substance in China

EINECS: European INventory of Existing Commercial chemical Substances

ELINCS: European List of Notified Chemical Substances

NLP: No-Longer Polymers

ENCS: Existing and New Chemical Substances Inventory

KECI: Korea Existing Chemicals Inventory NZIoC: New Zealand Inventory of Chemicals

PICCS: Philippine Inventory of Chemicals and Chemical Substances

TSCA: Toxic Substances Control Act

TCSI: Taiwan Chemical Substance Inventory INSQ: Inventario Nacional de Sustancias Químicas

NCI: National Chemical Inventory

FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances

Powered by AuthorITe, from Chemwatch.